IoT-based Epidemic Monitoring via Improved Gated Recurrent Unit Model(SCI)

.A development team with both strength and technology.

项目简介:During the Coronavirus Disease 2019 (COVID-19) pandemic, non-contact health monitoring and human activity detection by various sensors have attracted tremendous attention. Robot monitoring will result in minimizing the life threat to health providers during the COVID-19 pandemic period. How to improve the performance and generalization of the monitoring model is a critical but challenging task. This paper constructs an epidemic monitoring architecture based on multi-sensor information fusion and applies it in medical robots’ services, such as patient-care, disinfection, garbage disposal, etc. We propose a gated recurrent unit model based on a genetic algorithm (GA-GRU)to realize the effective feature selection and improve the effectiveness and accuracy of the localization, navigation, and activity monitoring for indoor wireless sensor networks (WSNs). By using two GRU layers in the GA-GRU, we improve the generalization capability in multiple WSNs. All these advantages of GA-GRU make it outperform other representative algorithms in a variety of evaluation metrics. The experiments on the WSNs verify that the proposed GA-GRU leads to successful runs and provides optimal performances. These results suggest the GA-GRU method may be preferable for epidemic monitoring in medicine and allied areas with particular relation to the control of the epidemic or pandemic such as COVID-19 pandemic.
项目作者:(学生):李刘欢Liuhuan Li, 黄明芳Mingfang Huang,杨长国Changguo Yang